21 research outputs found

    Control Systems Engineering made Easy: Motivating Students through Experimentation on UAVs

    Get PDF
    International audienceThis paper focuses on a new elective course on modeling and control of multi-agent systems, with experimentation on Unmanned Aerial Vehicles (UAVs). The module is taught for students with basic knowledge in Automatic Control and Optimization and it intends to increase their interest in applying advanced control techniques on UAVs in an enjoyable framework favorable to develop creativity, practical and team working skills, together with a solid and persistent theoretical background

    Constrained distributed state estimation for surveillance missions using multi-sensor multi-robot systems

    No full text
    Distributed algorithms have pervaded many aspects of control engineering with applications for multi-robot systems, sensor networks, covering topics such as control, state estimation, fault detection, cyber-attack detection and mitigation on cyber-physical systems, etc. Indeed, distributed schemes face problems like scalability and communication between agents. In multi-agent systems applications (e.g. fleet of mobile robots, sensor networks) it is now common to design state estimation algorithms in a distributed way so that the agents can accomplish their tasks based on some shared information within their neighborhoods. In surveillance missions, a low-cost static Sensor Network (e.g. with cameras) could be deployed to localize in a distributed way intruders in a given area. In this context, the main objective of this work is to design distributed observers to estimate the state of a dynamic system (e.g. a multi-robot system) that efficiently handle constraints and uncertainties but with reduced computation load. This PhD thesis proposes new Distributed Moving Horizon Estimation (DMHE) algorithms with a Luenberger pre-estimation in the formulation of the local problem solved by each sensor, resulting in a significant reduction of the computation time, while preserving the estimation accuracy. Moreover, this manuscript proposes a consensus strategy to enhance the convergence time of the estimates among sensors while dealing with weak unobservability conditions (e.g. vehicles not visible by some cameras). Another contribution concerns the improvement of the convergence of the estimation error by mitigating unobservability issues by using a l-step neighborhood information spreading mechanism. The proposed distributed estimation is designed for realistic large-scale systems scenarios involving sporadic measurements (i.e. available at time instants a priori unknown). To this aim, constraints on measurements (e.g. camera field of view) are embodied using time-varying binary parameters in the optimization problem. Both realistic simulations within the Robot Operating System (ROS) framework and Gazebo environment, as well as experimental validation of the proposed DMHE localization technique of a Multi-Vehicle System (MVS) with ground mobile robots are performed, using a static Sensor Network composed of low-cost cameras which provide measurements on the positions of the robots of the MVS. The proposed algorithms are compared to previous results from the literature, considering several metrics such as computation time and accuracy of the estimates.Les algorithmes distribués sont dorénavant présents dans de nombreux aspects de l'Automatique avec des applications pour des systèmes multi-robots, des réseaux de capteurs, couvrant des sujets tels que la commande, l'estimation d'état, la détection de défauts, la détection et l'atténuation des cyberattaques sur les systèmes cyber-physiques, etc. En effet, les systèmes distribués sont confrontés à des problèmes tels que l'extensibilité à un grand nombre d'agents et la communication entre eux. Dans les applications de systèmes multi-agents (par exemple, flotte de robots mobiles, réseaux de capteurs), il est désormais courant de concevoir des algorithmes d'estimation d'état de manière distribuée afin que les agents puissent accomplir leurs tâches sur la base de certaines informations partagées au sein de leur voisinage. Dans le cas de missions de surveillance, un réseau de capteurs statique et à faible coût (par exemple, caméras) pourrait ainsi être déployé pour localiser de manière distribuée des intrus dans une zone donnée. Dans ce contexte, l'objectif principal de cette thèse est de concevoir des observateurs distribués pour estimer l'état d'un système dynamique (par exemple, flotte de robots intrus) avec une charge de calcul réduite tout en gérant efficacement les contraintes et les incertitudes. Cette thèse propose de nouveaux algorithmes d'estimation distribuée à horizon glissant avec une pré-estimation de type Luenberger dans la formulation du problème local résolu par chaque capteur, entraînant une réduction significative du temps de calcul, tout en préservant la précision de l'estimation. En outre, ce manuscrit propose une stratégie de consensus pour améliorer le temps de convergence des estimations entre les capteurs sous des conditions de faible observabilité (par exemple, des véhicules intrus non visibles par certaines caméras). Une autre contribution concerne l'amélioration de la convergence de l'erreur d'estimation en atténuant les problèmes de non observabilité à l'aide d'un mécanisme de diffusion de l'information sur plusieurs pas (appelé "l-step") entre voisinages. L'estimation distribuée proposée est conçue pour des scénarios réalistes de systèmes à grande échelle impliquant des mesures sporadiques (c'est-à-dire disponibles à des instants a priori inconnus). À cette fin, les contraintes sur les mesures (par exemple, le champ de vision de caméras) sont incorporées dans le problème d'optimisation à l'aide de paramètres binaires variant dans le temps. L'algorithme développé est implémenté sous le middleware ROS (Robot Operating System) et des simulations réalistes sont faites à l'aide de l'environnement Gazebo. Une validation expérimentale de la technique de localisation proposée est également réalisée pour un système multi-véhicules (SMV) à l'aide d'un réseau de capteurs statiques composé de caméras à faible coût qui fournissent des mesures sur les positions d'une flotte de robots mobiles composant le SMV. Les algorithmes proposés sont également comparés à des résultats de la littérature en considérant diverses métriques telles que le temps de calcul et la précision des estimées

    Estimation d'état distribuée sous contraintes pour une mission de surveillance multi-capteurs multi-robots

    No full text
    Les algorithmes distribués sont dorénavant présents dans de nombreux aspects de l'Automatique avec des applications pour des systèmes multi-robots, des réseaux de capteurs, couvrant des sujets tels que la commande, l'estimation d'état, la détection de défauts, la détection et l'atténuation des cyberattaques sur les systèmes cyber-physiques, etc. En effet, les systèmes distribués sont confrontés à des problèmes tels que l'extensibilité à un grand nombre d'agents et la communication entre eux. Dans les applications de systèmes multi-agents (par exemple, flotte de robots mobiles, réseaux de capteurs), il est désormais courant de concevoir des algorithmes d'estimation d'état de manière distribuée afin que les agents puissent accomplir leurs tâches sur la base de certaines informations partagées au sein de leur voisinage. Dans le cas de missions de surveillance, un réseau de capteurs statique et à faible coût (par exemple, caméras) pourrait ainsi être déployé pour localiser de manière distribuée des intrus dans une zone donnée. Dans ce contexte, l'objectif principal de cette thèse est de concevoir des observateurs distribués pour estimer l'état d'un système dynamique (par exemple, flotte de robots intrus) avec une charge de calcul réduite tout en gérant efficacement les contraintes et les incertitudes. Cette thèse propose de nouveaux algorithmes d'estimation distribuée à horizon glissant avec une pré-estimation de type Luenberger dans la formulation du problème local résolu par chaque capteur, entraînant une réduction significative du temps de calcul, tout en préservant la précision de l'estimation. En outre, ce manuscrit propose une stratégie de consensus pour améliorer le temps de convergence des estimations entre les capteurs sous des conditions de faible observabilité (par exemple, des véhicules intrus non visibles par certaines caméras). Une autre contribution concerne l'amélioration de la convergence de l'erreur d'estimation en atténuant les problèmes de non observabilité à l'aide d'un mécanisme de diffusion de l'information sur plusieurs pas (appelé "l-step") entre voisinages. L'estimation distribuée proposée est conçue pour des scénarios réalistes de systèmes à grande échelle impliquant des mesures sporadiques (c'est-à-dire disponibles à des instants a priori inconnus). À cette fin, les contraintes sur les mesures (par exemple, le champ de vision de caméras) sont incorporées dans le problème d'optimisation à l'aide de paramètres binaires variant dans le temps. L'algorithme développé est implémenté sous le middleware ROS (Robot Operating System) et des simulations réalistes sont faites à l'aide de l'environnement Gazebo. Une validation expérimentale de la technique de localisation proposée est également réalisée pour un système multi-véhicules (SMV) à l'aide d'un réseau de capteurs statiques composé de caméras à faible coût qui fournissent des mesures sur les positions d'une flotte de robots mobiles composant le SMV. Les algorithmes proposés sont également comparés à des résultats de la littérature en considérant diverses métriques telles que le temps de calcul et la précision des estimées.Distributed algorithms have pervaded many aspects of control engineering with applications for multi-robot systems, sensor networks, covering topics such as control, state estimation, fault detection, cyber-attack detection and mitigation on cyber-physical systems, etc. Indeed, distributed schemes face problems like scalability and communication between agents. In multi-agent systems applications (e.g. fleet of mobile robots, sensor networks) it is now common to design state estimation algorithms in a distributed way so that the agents can accomplish their tasks based on some shared information within their neighborhoods. In surveillance missions, a low-cost static Sensor Network (e.g. with cameras) could be deployed to localize in a distributed way intruders in a given area. In this context, the main objective of this work is to design distributed observers to estimate the state of a dynamic system (e.g. a multi-robot system) that efficiently handle constraints and uncertainties but with reduced computation load. This PhD thesis proposes new Distributed Moving Horizon Estimation (DMHE) algorithms with a Luenberger pre-estimation in the formulation of the local problem solved by each sensor, resulting in a significant reduction of the computation time, while preserving the estimation accuracy. Moreover, this manuscript proposes a consensus strategy to enhance the convergence time of the estimates among sensors while dealing with weak unobservability conditions (e.g. vehicles not visible by some cameras). Another contribution concerns the improvement of the convergence of the estimation error by mitigating unobservability issues by using a l-step neighborhood information spreading mechanism. The proposed distributed estimation is designed for realistic large-scale systems scenarios involving sporadic measurements (i.e. available at time instants a priori unknown). To this aim, constraints on measurements (e.g. camera field of view) are embodied using time-varying binary parameters in the optimization problem. Both realistic simulations within the Robot Operating System (ROS) framework and Gazebo environment, as well as experimental validation of the proposed DMHE localization technique of a Multi-Vehicle System (MVS) with ground mobile robots are performed, using a static Sensor Network composed of low-cost cameras which provide measurements on the positions of the robots of the MVS. The proposed algorithms are compared to previous results from the literature, considering several metrics such as computation time and accuracy of the estimates

    Constrained distributed state estimation for surveillance missions using multi-sensor multi-robot systems

    No full text
    Distributed algorithms have pervaded many aspects of control engineering with applications for multi-robot systems, sensor networks, covering topics such as control, state estimation, fault detection, cyber-attack detection and mitigation on cyber-physical systems, etc. Indeed, distributed schemes face problems like scalability and communication between agents. In multi-agent systems applications (e.g. fleet of mobile robots, sensor networks) it is now common to design state estimation algorithms in a distributed way so that the agents can accomplish their tasks based on some shared information within their neighborhoods. In surveillance missions, a low-cost static Sensor Network (e.g. with cameras) could be deployed to localize in a distributed way intruders in a given area. In this context, the main objective of this work is to design distributed observers to estimate the state of a dynamic system (e.g. a multi-robot system) that efficiently handle constraints and uncertainties but with reduced computation load. This PhD thesis proposes new Distributed Moving Horizon Estimation (DMHE) algorithms with a Luenberger pre-estimation in the formulation of the local problem solved by each sensor, resulting in a significant reduction of the computation time, while preserving the estimation accuracy. Moreover, this manuscript proposes a consensus strategy to enhance the convergence time of the estimates among sensors while dealing with weak unobservability conditions (e.g. vehicles not visible by some cameras). Another contribution concerns the improvement of the convergence of the estimation error by mitigating unobservability issues by using a l-step neighborhood information spreading mechanism. The proposed distributed estimation is designed for realistic large-scale systems scenarios involving sporadic measurements (i.e. available at time instants a priori unknown). To this aim, constraints on measurements (e.g. camera field of view) are embodied using time-varying binary parameters in the optimization problem. Both realistic simulations within the Robot Operating System (ROS) framework and Gazebo environment, as well as experimental validation of the proposed DMHE localization technique of a Multi-Vehicle System (MVS) with ground mobile robots are performed, using a static Sensor Network composed of low-cost cameras which provide measurements on the positions of the robots of the MVS. The proposed algorithms are compared to previous results from the literature, considering several metrics such as computation time and accuracy of the estimates.Les algorithmes distribués sont dorénavant présents dans de nombreux aspects de l'Automatique avec des applications pour des systèmes multi-robots, des réseaux de capteurs, couvrant des sujets tels que la commande, l'estimation d'état, la détection de défauts, la détection et l'atténuation des cyberattaques sur les systèmes cyber-physiques, etc. En effet, les systèmes distribués sont confrontés à des problèmes tels que l'extensibilité à un grand nombre d'agents et la communication entre eux. Dans les applications de systèmes multi-agents (par exemple, flotte de robots mobiles, réseaux de capteurs), il est désormais courant de concevoir des algorithmes d'estimation d'état de manière distribuée afin que les agents puissent accomplir leurs tâches sur la base de certaines informations partagées au sein de leur voisinage. Dans le cas de missions de surveillance, un réseau de capteurs statique et à faible coût (par exemple, caméras) pourrait ainsi être déployé pour localiser de manière distribuée des intrus dans une zone donnée. Dans ce contexte, l'objectif principal de cette thèse est de concevoir des observateurs distribués pour estimer l'état d'un système dynamique (par exemple, flotte de robots intrus) avec une charge de calcul réduite tout en gérant efficacement les contraintes et les incertitudes. Cette thèse propose de nouveaux algorithmes d'estimation distribuée à horizon glissant avec une pré-estimation de type Luenberger dans la formulation du problème local résolu par chaque capteur, entraînant une réduction significative du temps de calcul, tout en préservant la précision de l'estimation. En outre, ce manuscrit propose une stratégie de consensus pour améliorer le temps de convergence des estimations entre les capteurs sous des conditions de faible observabilité (par exemple, des véhicules intrus non visibles par certaines caméras). Une autre contribution concerne l'amélioration de la convergence de l'erreur d'estimation en atténuant les problèmes de non observabilité à l'aide d'un mécanisme de diffusion de l'information sur plusieurs pas (appelé "l-step") entre voisinages. L'estimation distribuée proposée est conçue pour des scénarios réalistes de systèmes à grande échelle impliquant des mesures sporadiques (c'est-à-dire disponibles à des instants a priori inconnus). À cette fin, les contraintes sur les mesures (par exemple, le champ de vision de caméras) sont incorporées dans le problème d'optimisation à l'aide de paramètres binaires variant dans le temps. L'algorithme développé est implémenté sous le middleware ROS (Robot Operating System) et des simulations réalistes sont faites à l'aide de l'environnement Gazebo. Une validation expérimentale de la technique de localisation proposée est également réalisée pour un système multi-véhicules (SMV) à l'aide d'un réseau de capteurs statiques composé de caméras à faible coût qui fournissent des mesures sur les positions d'une flotte de robots mobiles composant le SMV. Les algorithmes proposés sont également comparés à des résultats de la littérature en considérant diverses métriques telles que le temps de calcul et la précision des estimées

    A Distributed Model Predictive Control Strategy for Constrained Multi-Vehicle Systems Moving in Unknown Environments

    No full text
    International audienceIn this paper, we propose a distributed model predictive control strategy for a team of vehicles moving in an unknown obstacle scenario. In particular, we combine receding horizon control arguments with leader-follower formations in order to design a flexible architecture where the vehicle topology, if needed, can be rearranged to better cope with the presence of obstacles. Each vehicle is equipped with an ad-hoc dual-mode controller in charge of tracking along the leader-follower chain the predecessor vehicle (namely the target for the leader) and ensuring absence of collisions. Moreover, whenever the leader recognizes that the obstacle scenario obstructs its navigation, the current formation is properly reconfigured by preserving recursive feasibility and obstacle avoidance properties. Final numerical results on a team of seven point mobile robots are instrumental to show the main features of the proposed distributed model predictive control algorithm

    Distributed moving horizon state estimation for sensor networks with low computation capabilities

    No full text
    International audienceThis paper focuses on distributed state estimation for sensor network observing a discrete-time linear system. The provided solution is based on a Distributed Moving Horizon Estimation (DMHE) algorithm with consensus-based arrival cost and a pre-estimating Luenberger observer in the formulation of the local problem solved by each sensor. This leads to reduce the computation load, while preserving the accuracy of the estimation. Moreover, observability properties of local sensors are used for tuning the weights related to consensus information fusion built on an observability rank-based condition, in order to improve the convergence of the estimation error. Results obtained by Monte Carlo simulations are provided to compare the performance with existing approaches, in terms of accuracy of the estimations and computation time

    A new L-step neighbourhood distributed moving horizon estimator

    No full text
    International audienceThis paper focuses on Distributed State Estimation over a peer-to-peer sensor network composed by possible lowcomputational sensors. We propose a new-step Neighbourhood Distributed Moving Horizon Estimation technique with fused arrival cost and pre-estimation, improving the accuracy of the estimation, while reducing the computation time compared to other approaches from the literature. Simultaneously, convergence of the estimation error is improved by means of spreading the information amongst neighbourhoods, which comes natural in the sliding window data present in the Moving Horizon Estimation paradigm

    Multi-Vehicle System Localization by Distributed Moving Horizon Estimation over a Sensor Network with Sporadic Measurements

    No full text
    International audienceThis paper proposes a Distributed Moving Horizon Estimator (DMHE) for the Multi-Vehicle system localization problem using Sensor Networks with sporadic measurements. Due to its capability to efficiently exploit environmental information via constraints, the proposed DHME technique is well-suited to better estimate the system state when measurements are available at time instants a priori unknown. Indeed, the use of output constraints can contribute to locally improve estimation accuracy, especially when dealing with sporadic measurements and biased sensors data. A realistic case study is proposed within the Robot Operating System framework and Gazebo to localize a Multi-Vehicle System using an inexpensive Sensor Network with low-computation capabilities. A comparative campaign simulation is performed to confirm the effectiveness of the proposed DMHE algorithm in terms of accuracy, computation time, and constraints handling with respect to existing results

    Distributed Moving Horizon Localization for Multi-Vehicle System over a Sensor Network with Sporadic Measurements

    No full text
    Présentation orale lors de la Journée du Comité Technique Commande Prédictive Non Linéair
    corecore